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Many time series in natural and social sciences can be seen as resulting from an interplay between exog-
enous influences and an endogenous organization. We use a simple epidemic-type aftershock model of events
occurring sequentially, in which future events are influenced �partially triggered� by past events to ask the
question of how well can one disentangle the exogenous events from the endogenous ones. We apply both
model-dependent and model-independent stochastic declustering methods to reconstruct the tree of ancestry
and estimate key parameters. In contrast with previously reported positive results, we have to conclude that
declustered catalogs are rather unreliable for the synthetic catalogs that we have investigated, which contains
of the order of thousands of events, typical of realistic applications. The estimated rates of exogenous events
suffer from large errors. The branching ratio n, quantifying the fraction of events that have been triggered by
previous events, is also badly estimated in general from declustered catalogs. We find, however, that the errors
tend to be smaller and perhaps acceptable in some cases for small triggering efficiency and branching ratios.
The high level of randomness together with the long memory makes the stochastic reconstruction of trees of
ancestry and the estimation of the key parameters perhaps intrinsically unreliable for long-memory processes.
For shorter memories �larger “bare” Omori exponent�, the results improve significantly.
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I. INTRODUCTION

A large variety of natural and social systems are charac-
terized by a stochastic intermittent flow of sudden events:
landslides, earthquakes, storms, floods, volcanic eruptions,
biological extinctions, traffic gridlocks, power blackouts,
breaking news, commercial blockbusters, financial crashes,
economic crises, terrorist acts, geopolitical events, and so on.
Sequences of such sudden events constitute often the most
crucial features of the evolutionary dynamics of complex
systems, both in terms of their description, characterization
and understanding. Accordingly, a useful class of models of
complex systems views their dynamics as a sequence of in-
termittent discrete short-lived events. In the limit where the
time scales, over which the change of regimes associated
with the occurrence of the events occur, are small compared
with the interevent intervals, the catalog of events can be
modeled using the mathematics of point processes �1,2�. This
modeling strategy emphasizes that the system is active dur-
ing short-lived events and inactive otherwise. This amounts
to separating a more or less incoherent background activity
�such as small undetectable earthquakes� from the occur-
rence of structured events �large earthquakes�, which are the
focus of interest. We note that the class of stochastic point
processes is fundamentally different from that of discrete and
continuous stochastic processes, for which the activity is
nonzero most of the time.

Having a time series or catalog of discrete events, we are
interested in understanding the generating process that led to
the observed sequence. The difficulty in deciphering the un-
derlying mechanisms stems from the fact that the above sys-
tems of interest are on the one hand subjected to external
forcing, which on the other hand provide them the stimuli to
self-organize via negative and positive feedback mecha-
nisms. Most natural and social systems are indeed continu-
ously subjected to external stimulations, noises, shocks, so-
licitations, and forcing, which can widely vary in amplitude.
It is thus not clear a priori if the observed activity is due to
a strong exogenous shock, to the internal dynamics of the
system organizing in response to the continuous flow of in-
formation and perturbations, or maybe to a combination of
both. In general, a combination of external inputs and inter-
nal organization is at work and it seems hopeless to disen-
tangle the different contributions to the observed collective
human response. Determining the chain of causality for such
questions requires disentangling interwoven exogenous and
endogenous contributions with either no clear or too many
signatures. How can one assert with confidence that a given
event or characteristic is really due to an endogenous self-
organization of the system, rather than to the response to an
external shock?

It turns out that a significant understanding of the com-
plex flow of observed events can be achieved by precisely
framing the problem in terms of a classification of two lim-
ited classes of events: �i� those that are the response of the
system to exogenous shocks to the system and �ii� those that
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appear endogenously without any obvious external causes.
This can be done by looking at the specific endogenous and
exogenous signatures and their mutual relations, which are
reminiscent of the fluctuation-susceptibility theorem in sta-
tistical physics �3,4�. This approach provides a useful frame-
work for understanding many complex systems and has been
successfully applied in several contexts: commercial book
successes �5,6�, social crises �7�, financial volatility �8�, fi-
nancial bubbles and crashes �9,10�, earthquakes �11,12�, dis-
eases in complex biological organisms �13�, epileptic sei-
zures �14�, and so on.

A common feature observed in these different systems is
the fact that events are not independent as they would be if
generated by a Poisson process. Instead, they exhibit pro-
nounced interdependencies, characterized by “self-
excitation,” i.e., past events are found to often promote or
trigger �in part� future events, leading to epidemiclike cas-
cades of events. The analogy with triggering and cascade
processes occurring in viral epidemics is so vivid in some
instances that the name “epidemic-type aftershock �ETAS�
model” has been given to one of the most popular model of
earthquake aftershock processes �15–17�. The ETAS model
belongs to the class of self-excited conditional point pro-
cesses introduced in mathematics by Hawkes �18–20�. It
constitutes an excellent first-order approximation to describe
the spatiotemporal organization of earthquakes �21� and is
now taken as a standard benchmark. This class of “self-
excited” point processes also provides quantitative predic-
tions on the different decay rates after exogenous peaks of
activity on the one hand and endogenous peaks of activity on
the other hand. These predictions have been verified in a
unique data set of almost 5 000 000 time series of human
activity collected subdaily over 18 months since April 2007
from the third most visited website YouTube.com.

Given these preliminary successes, we would like to de-
cipher, understand, and perhaps forecast the dynamics of
events. For this, it is important to recognize that the observed
dynamics can be modeled as a complex entangled mixture of
events, from exogenous shocks impacting the systems pro-
viding bring surprises, that are progressively endogenized by
the system, which is also capable of purely endogenous �or
internal� bursts of activity. In between, real systems can be
viewed as organized by a mixture of exogenous shocks and
endogenous bursts of activity. The grail is to disentangle
these different types of events.

The purpose of the present paper is to contribute a step
toward the operational problem of disentangling the exog-
enous and endogenous contributions to the organization of a
system revealed by a time series of discrete events. For this,
we use synthetic catalogs of events generated by the ETAS
model. This model describes the occurrence of successive
events, each of them characterized by its time ti of occur-
rence and a “mark” Mi, which we refer to as “magnitude” to
borrow from the vocabulary of earthquakes. Generally, the
mark can be any trait or property that influences the ability of
the event to trigger other future events. The conditional in-
tensity ��t ,M �Ht� of the linear version of the general

self-excited Hawkes process �which we use later to define
the specifics of the ETAS model� reads

��t,M�Ht� = ��t,M� + �
ti�t

h�t,M ;ti,Mi� . �1�

��t ,M �Ht� consists of two main contributions: �i� the back-
ground intensity � which, if alone, would give a pure Pois-
son process of background events �more complicated source
terms can be considered, but we keep � constant in the
present paper and thus drop its possible dependence on t and
M�; �ii� the response functions h, one for each past event,
describing the propensity to trigger future events. Specifi-
cally, h�t ,M ; ti ,Mi� is the intensity of the ith event that oc-
curred at time ti with magnitude Mi to produce an aftershock
at a later time t� ti with magnitude M. Ht stands for the
history known at time t, and thus includes the sequence of all
events from the beginning of observations till t.

Zhuang et al. �22,23� proposed a rigorous stochastic de-
clustering method that, in essence, implements the program
of disentangling the different events according to their back-
ground �exogenous� or triggered �endogenous� origins.
Zhuang et al. applied the space-time ETAS model to real
earthquake catalogs. The main problem is that no validation
test was performed to check if the reconstruction of the an-
cestry sequence was realistic and if the inverted parameters
were consistent, i.e., without bias. In the present paper, our
goal is to make a systematic investigation of the quality of
the stochastic reconstruction method�s�. For this, using
ETAS model �1�, we generate known synthetic catalogs of
events, which are considered as our “observations.” We then
apply different approaches, which are variants of the “sto-
chastic declustering” methods introduced by Zhuang et al.
�22,24� and generalized by Marsan and Lengliné �25�. Our
strategy is to compare the key parameters obtained from the
reconstruction of the cascade of triggering events obtained
by these declustering methods applied to our “observations”
to the known true values. This allows us to establish the
uncertainties and biases associated with these “model inver-
sions.” As we shall see, the level of stochasticity, inherent in
self-excited conditional Poisson processes, introduces rather
dramatic errors, which appear to have been largely underes-
timated in the literature. Because of the general application
of this problem to a variety of domains, we focus our atten-
tion to time series of events, assuming that spatial informa-
tion is either irrelevant or not available. This makes the prob-
lem of stochastic declustering less constrained than in the
case of earthquakes, for instance, in which one does have
some information on the spatial positions, in addition to the
times of occurrence.

The paper is organized as follows. Section II reviews the
two methods of stochastic declustering. Section III first de-
scribes the ETAS model that we have used for the generation
of synthetic catalogs. Then, it presents the two specific
implementations of the ETAS model, referred to respectively
as the generation-by-generation and event-by-event algo-
rithms. After recalling the main results of previous tests per-
formed by other authors, Sec. IV defines the parameters that
are tested and presents the main results using the two declus-
tering stochastic declustering method �SDM� and Marsan
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and Lengliné’s model-independent stochastic declustering
�MISD� methods on synthetic catalogs generated by the two
generation-by-generation and event-by-event algorithms.
Section VI concludes.

II. DESCRIPTION OF DIFFERENT
DECLUSTERING VARIANTS

The general idea underlying a stochastic declustering
method applied to a sequence of events thought to be gener-
ated by a self-excited conditional Poisson process is to at-
tribute to each event a probability of being either an exog-
enous �a so-called “background” event� or an offspring of
previous events �endogenous�. Obviously the former prob-
ability is one minus the later probability. Therefore the main
task is to estimate one of these probabilities for each event.
Specifically, it is convenient to focus on the probability that a
given event is a background event.

We start from the stochastic declustering method intro-
duced in Refs. �22,24�. This method can be implemented
under several technical variants, such as the thinning �ran-
dom deletion� method, and a variable bandwidth kernel func-
tion method associated with the maximum-likelihood estima-
tion of the ETAS model. Using any of these two approaches,
the background intensity is obtained by using an iterative
algorithm, and the declustered catalogs can also be gener-
ated.

A. Zhuang et al.’s declustering method

We focus on the thinning procedure, which uses the prob-
abilities �ik for the kth event to be an aftershock of the ith
event and the probability �k that the kth event is only a
background event �22,24�. These probabilities can be ex-
pressed in terms of the response function and the intensity
defining ETAS model �1�,

�ik =
h�tk,Mk;ti,Mi�

��tk,Mk�Ht�
. �2�

This allows us to define the probability �k that the kth event
is an aftershock �whatever its triggering “mother”� as

�k = � �ik. �3�

Therefore, the probability �k that the kth event is only a
background event is

�k = 1 − �k =
��tk,Mk�Htk

�

��tk,Mk�Ht�
, �4�

These probabilities are called “thinning probabilities” �23�.
If we delete the kth event in the catalog with probability

�k for all k=1;2 ; . . . ;N, then the thinned process should re-
alize a nonhomogeneous Poisson process of the intensity
��t ,M� �see �26� for the mathematical justification�. This
process is called the background subprocess, and the comple-
mentary subprocess is the cluster or offspring process. The
following algorithm implements this thinning procedure.

Algorithm 1

The indices k=1;2 ; . . . ;N of the events in the catalog are
ordered according to their time sequence: ti� t2� . . . � tN.

�1� For all events k=1,2 , . . . ,N;, calculate their probabili-
ties �k in Eq. �3�.

�2� Generate N uniform random numbers U1 ,U2 , . . . ,UN in
�0;1�.

�3� If Uk�1−�k, keep the kth event; otherwise, delete it
from the catalog as an offspring. The remaining events
can be regarded as the background events.

This algorithm can be applied to any data series and will find
thinning probabilities for each event, which are functions of
the specific model used.

The next issue is to estimate the parameters defining the
response functions h�tk ,Mk ; ti ,Mi� of the Hawkes point pro-
cess. For this, the following algorithm determine which
event in the data set is the ancestor of a given kth event.

Algorithm 2

�1� For each pair of events i ;k=1,2 , . . . ,N�i�k�, calculate
the probability �ik in Eq. �2� and �k in Eq. �4�.

�2� Set k=1.

�3� Generate a uniform random number Uk� �0;1�.
�4� If Uk��k, then the kth event is regarded as a back-

ground event.

�5� Otherwise, select the smallest index I in �i+1, . . . ,N�
such that Uk��k+�i=1

I �ik. Then, the kth event is re-
garded to be a descendant of the Ith event.

�6� If k=N, terminate the algorithm; else set k=k+1 and
go to step 3.

The output of this algorithm is to provide a complete classi-
fication of events as backgrounds or descendent of some pre-
vious event, this previous event being either a background or
a descendent of another previous event and so on. The cor-
responding reconstructed ancestry tree allows us to calculate
different parameters of the model, such at the productivity
law, giving the average number of offsprings of a given
event as a function of its magnitude. Of course, a given an-
cestry tree obtained by this stochastic declustering method is
not unique since, given a fixed catalog of events, it depends
on the realization of the random numbers �Uk� in Algorithms
1 and 2. Thus, these stochastic reconstructions must be per-
formed many times with different independent realizations of
the random numbers �Uk� to obtain many statistically equiva-
lent ancestry trees over which statistical averages can be
taken.

B. Marsan and Lengliné’s model-independent
stochastic declustering

The MISD method also aims at determining thinning
probabilities �2� �25,27�, using a rapidly converging algo-
rithm with a minimum set of hypotheses. The MISD method
proposes to reveal the full branching structure of the trigger-
ing process, while avoiding model-dependent inversions.
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The MISD method has the following key assumptions:
�i� The generating process of the observed catalog of

events is considered to be a point process, in time, space, and
magnitude �we will only consider the situation where no spa-
tial information is provided in this paper to focus only on
time series�. Its conditional intensity consists of a linear su-
perposition of a constant �Poisson process� background in-
tensity � and of the branching part represented by the sum-
mation in the right-hand side of the following expression:

��t, x̄,m� = � + �
ti�t

�i�ti, x̄i,mi� , �5�

where the sum is performed over all ith events that have
occurred before time t.

�ii� The average activity of events in response to the oc-
currence of a given event only depends on its magnitude m.

While very general, it is however necessary to point out
that the MISD method assumes that the conditional Poisson
intensity �i�ti , x̄i ,mi� due to each passed event i contributes
additively �linearly� to the total conditional intensity ��t , x̄�.
This assumption is appropriate if the generating process be-
longs to the class of linear self-excited Hawkes processes �1�.
However, this linearity condition excludes a large class of
nonlinear self-excited conditional Poisson models �28,29�,
and in particular the class of multiplicative �in contrast to
additive� Poisson models �30,31� endowed with general mul-
tifractal scaling properties �32�.

The MISD algorithm includes two iterating steps �that we
present in full generality, including the possible existence of
a spatial information�:

�1� Starting with a first a priori guess of the “bare” kernel
��t , x̄ ,m� and of �, the triggering weight �thinning probabil-
ity� is estimated by �ij =aj��tj − ti , �x̄j − x̄i� ,mi� for ti� tj and
0 otherwise. The “background weight” is estimated as
� j =aj�, where aj is a normalization coefficient.

�2� The updated �a posteriori� “bare” rates are then com-
puted as

����t�, ��x̄�,m� =
1

Nm�t S���x̄��r� �
i,j�A

�ij ,

where A is the set of pairs such that �x̄i− x̄j�= ��x̄�	�r, mi
=m	�m and tj − ti= t	�t ��r, �t, and �m are discretization
parameters�, Nm is the number of events such that mi
=m	�m, and S���x̄��r� is the surface covered by the disk
with radii ��x̄�	�r. Similarly, the a posteriori background
rate is

� =
1

TS
�
j=1

N

� j ,

where T is the duration of the time series �containing N
events� and S is the surface analyzed.

Roughly speaking, the first step of the algorithm selects
the triggering events for each triggered event �i.e., it assigns
triggering weights based on our present knowledge of the
rates�. The second step then updates these rates, using the
intermediate branching structure obtained at the first step.
The solution is accepted �convergence is achieved� when the

a priori and the a posteriori kernels are identical, implying
that the rates and weights are consistent with each other.

The initial formulation recalled above and the implemen-
tation of the MISD algorithm was done for three- and four-
dimensional data, including time, magnitude, and spatial co-
ordinates of events �25,27�. Lately, Marsan adapted the code
to two-dimensional data �times and magnitudes� and we use
his code for the research reported here. In our implementa-
tion, following Marsan and others, we use logarithmic
binned time and linear magnitude bins.

III. MODEL AND SIMULATION IMPLEMENTATIONS

This section describes the specific Hawkes-ETAS model
that we use to generate synthetic time series of events, which
are then collated in catalogs on which the different stochastic
declustering algorithms described in the previous section are
applied. It should be noted that the Hawkes-ETAS model
includes many point processes as particular cases. It consti-
tutes a very general class of “linear” point processes. The
term “linear” refers here to the dependence of intensity �1� as
a �linear� sum over the past events.

Previous implementation by Zhuang et al. �22,24� have
used the ETAS model with its full space-time formulation.
Here, we use the ETAS model in which the spatial informa-
tion is supposed to be nonexistent or irrelevant. In this way,
our tests are relevant to catalogs of events obtained in other
systems, such as social, commercial financial, and biological
systems.

A. ETAS model

The ETAS model is defined as the self-excited linear con-
ditional Poisson model with intensity �1�, in which the
�“bare”� response function h�t ,M ; ti ,Mi� is expressed at the
product of three terms,

h�t,M,ti,Mi�Htk
� = j�M�
�t − ti�Htk

�Q�Mi� , �6�

where

j�M� = b �ln�10�� 10−b�M−M0� �7�

has the form of a Gutenberg-Richter law prescribing the fre-
quency of events of magnitudes M,


��� =
�c�

�c + ��1+� , �8�

has the form of the Omori-Utsu law specifying the probabil-
ity density function �PDF� of time intervals between a main
event and its direct aftershocks, and

Q�M� = K 10M �9�

is the productivity law giving the mean number of direct
aftershocks generated by an event as a function of its mag-
nitude M. We thus have
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h�t,M,ti,Mi�Htk
�

= b �ln�10�� 10−b�M−M0� ·
�c�

�c + t − ti�1+�K10Mi.

�10�

Equations �6� and �10� express the independence between the
determination of the magnitude of aftershocks and their oc-
currence times on the one hand, and with the magnitudes of
their triggering ancestors on the other hand. Next, the back-
ground rate ��t ,M� in Eq. �1� is taken also multiplicative as

��t,M� = j�M�� . �11�

The constant � means that the background events are occur-
ring according to a standard memoryless Poisson process
with constant intensity. The multiplicative structure of
��t ,M� in Eq. �11� again expresses that the magnitudes of
the background events are independent of their occurrence
times.

In summary, the conditional intensity of the ETAS model
used here reads

��t,M�Htk
� = j�M�	� + �

i=1

k


�ti�Htk
�Q�Mi�
 , �12�

with definitions �7�–�9� and the constant background rate �.
Substituting Eqs. �11� and �12� into Eqs. �3� and �4�, we get
the sought thinning probabilities for the ETAS model.

In order to generate synthetic catalogs of events, we con-
sidered two different simulation algorithms. Both techniques
used the following set of parameters:

� = �c,�,,b,n� , �13�

where

n =
K

1 − /b
�14�

is the branching ratio—the mean number of direct after-
shocks per triggering event �16�. The first algorithm keeps
the information about the mother-daughter relations by gen-
erating events generation by generation. It uses a slightly
different implementation of the ETAS model than the second
algorithm and is computationally more costly in the sense
that a generated catalog becomes stationary only after tens or
even hundreds of thousands events. The second algorithm,
which is based on the formulation of the model described in
Sec. III A, is not very fast but is efficient. It generates events
that belong to the stationary regime from the beginning, so
no information about preceding events is lost �unlike the first
algorithm�. However, it loses the information about the
mother-daughter relations. Its performance was validated in
Ref. �33�.

B. First algorithm (generation by generation): Generation
of synthetic catalogs keeping the information

on the relations between events

The first simulation algorithm we use here was developed
by Felzer �34�. The idea is to generate events generation by

generation. First, the mother-shock and the background
events are generated, then goes the first generation of after-
shocks of existing events, after that the second generation
and so on. The procedure stops when the time boundary or
the limit on the number of events is reached. We slightly
modified the algorithm �mostly input and output� to corre-
spond to our needs.

The advantage of knowing the ancestry relations between
events, which allows us to estimate parameters such as  and
b, comes at the cost of the existence of a long transient
before the time series of events become stationary. Exactly at
criticality n=1, where n is given by Eq. �14�, this transient
becomes infinitely long lived since the renormalized Omori
law �16�, which takes into account all generations of events
triggered by each event, develops a nonintegrable decay
1 / t1−�, where � is defined in Eq. �8�. This makes this first
algorithm unreliable for n close to 1.

C. Second algorithm (event by event): Generation
of synthetic catalogs without any information

on the relations between events

Compared with standard numerical codes that have been
used by previous workers to generate synthetic catalogs of
events, the event-by-event algorithm uses the specific formu-
lation of the ETAS model and of its known conditional cu-
mulative distribution function �CDF� of interevent times.
Thus, parts of the calculations can be done analytically. The
occurrence times are generated one by one by determining
the CDF of the time till the next event based on the knowl-
edge of the previous CDF and the time of the previous event
�first introduced by Ozaki for Hawkes’ processes �35��. For
this, we use a standard Newton algorithm as well as a stan-
dard randomization algorithm. The event-by-event algorithm
is not very fast because it has to solve the equation for the
CDF numerically each time. However, as already mentioned
above, its advantage stems from the fact that the generated
events belong to the stationary regime from the beginning of
each catalog.

Let us recall how the CDFs Fk+1��� for k=2,3 , . . . of suc-
cessive events are obtained recursively. The first event is
supposed to have occurred at time t1=0.

The CDF F2��� of the waiting time from the first to the
second shock is made of two contributions: �i� the second
shock may be a background event or �ii� it may be triggered
by the first shock. This yields

F2��� = 1 − e−��e−q1�1−a����, �15�

where q1=Q�m1� is the productivity of the first shock ob-
tained from expression �9� given its magnitude m1, and a���
is defined as

a��� = �
�

�


�t��dt� = 	1 +
�

c

−�

. �16�

All following shocks are similarly either a background
event or triggered by one of the preceding events. The CDF
F3��� of the waiting time between the second and the third
shocks is thus given by
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F3��� = 1 − e−��e−q1�a�t2−t1�−a�t2+�−t1��−q2�1−a����, �17�

where t2 is the realized occurrence time of the second shock.
Iterating, we obtain the CDF Fk��� for the waiting time be-
tween the �k−1�th and kth shocks under the following form:

Fk��� = 1 − e−�� exp�− �
i=1

k−1

qi�a�tk−1 − ti� − a�tk−1 + � − ti�� ,

�18�

where tj is the occurrence time of the jth event �which is
equal to sum of all generated time intervals between events
prior to the jth one�, and qi=Q�mi� is the productivity of the
ith shock obtained from expression �9� given its magnitude
mi.

In order to generate the �k+1�th interevent time interval
between the occurrence of the kth and �k+1�th shock, it is
necessary to know the k previous interevents times between
the k previous shocks and their k magnitudes. Since, in the
ETAS model, the magnitudes are drawn independently ac-
cording to Gutenberg-Richter distribution �7�, they can be
generated once for all. In order to generate a catalog of N
events, we thus draw N magnitudes from law �7�. In order to
generate the corresponding N interevent times, we use ex-
pression �18� iteratively from k=1 to k=N in a standard way:
since any CDF F�x� of a random variable x is by construc-
tion itself uniformly distributed in �0,1�, we obtain a given
realization x� of the random variable x by drawing a random
number r uniformly in �0,1� and by solving the equation
F�x��=r. In our case, we generate N independent uniformly
distributed random numbers x1 , . . . ,xN in �0,1� and determine
each �i successively as the solution of Fi��i�=xi.

As mentioned above, the main shortcoming of this proce-
dure is that it does not record if an event was spontaneous or
a descendant of some previous event. For that reason, we
cannot use it for all parameter estimations.

D. Preliminary tests of the synthetic catalogs

We have checked the consistency of our algorithms by
verifying that, for K=0 in Eq. �9� corresponding to the ab-
sence of triggering, a Poisson flow of event time occurrence
is obtained.

We have implemented the two algorithms just discussed
in the previous subsection and have constructed the corre-
sponding CDFs from the obtained time series for b=1, c
=10−3, =0.7, �=0.1, n=0.7 �K=0.21�, and md−m0=0.01.
Figure 1 shows that both algorithms lead to CDFs which are
very close to each other, when the transient regimes of the
catalogs generated by the first generation-by-generation al-
gorithm are removed. Using the whole catalog including the
transient part for the first algorithm leads to very large dis-
tortions. We interpret the remaining slight difference between
the CDFs of interevent times for the first and second algo-
rithms after �partial� removal of the transient as due to the
residual influence of the transient part of the catalog in the
first generation-by-generation algorithm IIIB.

Some words of caution are in order on the meaning of
“transient.” From a pure theoretical view point, it is actually

intrinsically impossible to remove absolutely the transient
regime when the exponent � of bare response function �8� is
smaller than 1. Indeed, the statistical expectation ��� of the
waiting time between a main event and its direct aftershocks
is infinite: �0

T
����d��T1−� diverges as one considers larger
and larger catalogs of increasing durations T to perform the
average. This regime is typical of processes with “infinite”
memory and is well known to lead to anomalous transport
and diffusion properties �see for instance Refs. �37–40��. In
practice, we have experimented with different definitions of
the transient regime to find an operational procedure: typi-
cally, when we remove the first half of the catalogs, we
found that the CDFs reconstructed from the data in the sec-
ond half of the catalogs were close to the exact distributions
and did not change appreciably by removing even more
events. Having said that, the infinite memory associated with
the range 0���1, often documented in empirical data, is
one main cause of the difficulties with inverting for the pa-
rameters, as we demonstrate below. Specifically, Sec. V
shows that the stochastic reconstruction methods work much
better for ��1.

Figure 1 also shows for comparison the interevent CDFs
of �i� the Poisson flow of the background events, �ii� bare
Omori law �8�, and �iii� the theoretical prediction obtained
from the linearized equation governing the generating prob-
ability function of the interevent CDFs of the ETAS model
developed in �21,36�, confirming the need for the full non-
linear form of the equation of the generating probability
function of the interevent CDFs �33�.
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FIG. 1. CDFs of interevent times for synthetic catalogs gener-
ated for b=1, c=10−3, =0.7, �=0.1, n=0.7 �K=0.21�, and md

−m0=0.01. The CDFs of interevent times are shown for the two
algorithms �first event-by-event IIIC and second generation-by-
generation IIIB� and for the Poisson flow of the background events,
bare Omori law �8�, and the theoretical prediction obtained from the
linearized equation governing the generating probability function of
the interevent CDFs of the ETAS model developed in �21,36� �re-
ferred to in the legend as “CDF found from linearized ETAS
model”�.
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IV. RESULTS AND PERFORMANCE OF STOCHASTIC
DECLUSTERING METHODS (SDM AND MISD)

A. Previous tests of Zhuang et al.

As mentioned before, Zhuang et al. �22,24,41� applied
their declustering procedure described in Sec. II A to real
earthquake catalogs over four geographical regions: New
Zealand �NZ�, Central and Western Japan �CJ and WJ�, and
Northern China �NC�. Table I provides the results of their
SDM applied to these four regions.

Our main remark is that no error or uncertainty analysis is
reported and no study of the impact of the lower magnitude
threshold used in the catalog is performed. This is particu-
larly worrisome, given the demonstration that parameter es-
timations are significantly biased when the minimal observ-
able �registerable� magnitude md is different from �usually
larger than� the minimal event magnitude m0 able to produce
aftershocks �42,43�.

In a later paper, Zhuang et al. �44� reported some syn-
thetic tests to assess the reliability of the SDM in the ideal
case where md=m0. They quoted “good reconstruction re-
sults.” However, the parameters estimated with their SDM
�c�0.0004, �0.57, ��0.014, n�0.25� were very dif-
ferent from the true parameters �c=0.0002, �0.65, �
=0.12, n�0.99� used to generate the synthetic catalogs.
Very worrisome is the very large error in the value of the
branching ratio n. The true value n=0.99 corresponds to a
system close to critical branching in which triggering of mul-
tiple generations is expected to be very strong since 99% of
events are triggered on average while only 1% are exogenous
�12�. In contrast, the estimated value n�0.25 would be in-
terpreted as a relatively weak triggering regime in which
three-quarters of the events are exogenous.

B. Previous tests of Marsan and Lengliné

Unlike the SDM of Zhuang et al., the MISD method
was partially verified. Marsan and Lengliné generated syn-
thetic catalogs with the parameters b=1, c=0.01, =0.87,
�=0.2, n=0.9, and �=0.25. Applying the MISD to those
catalogs, Marsan and Lengliné could estimate the back-
ground rate �est=0.248	0.01, very close to the true value.
The estimates of the other parameters were reported to be
also good �25�.

C. Self-consistency of parameter estimations
of n and � from synthetic catalogs

1. Modifications to SDM

In the above presentation, we have considered only the
thinning probabilities of events in a catalog. But Zhuang et
al.’s method contains in addition a determination of condi-
tional intensity function �12� obtained by using an iterative
search procedure with the maximum likelihood L��� �2�.
Specifically, the search procedure determines the set of pa-
rameters � of the model for which the thinning probabilities
are best consistent with the conditional intensity ��t ,M �Htk

�.
Zhuang et al. used the first-order algorithm of Davidson-
Fletcher-Powell to find the sought maximum of the likeli-
hood function. This method suffers from the need to calcu-
late the derivatives of ��t ,M �Htk

� and L���, which makes
errors accumulate and slows down the calculations.

In the present work, we use the Nelder-Mead simplex
method which is significantly more efficient than the first-
order Davidson-Fletcher-Powell algorithm. In addition, we
recalculate the probabilities �ij for each estimation of the
likelihood function rather than at each iteration as performed
in the SDM version used by Zhuang et al. Our approach
increases the computation time of a single iteration but actu-
ally provides a significant gain as the number of iterations
needed for convergence is greatly reduced.

The set of parameters �d obtained from the maximization
of the likelihood function corresponds to the direct estima-
tion. The priority is to verify whether the direct estimation is
good enough. Then, we need to check that the catalog recon-
structed using thinning probabilities also provides good esti-
mates of the model parameters.

2. Applying the modified SDM to two-dimensional data

To check the goodness of the direct estimation by the
modified SDM �mSDM�, we generated five catalogs of 2500
events for different values of  and n and fixed c=0.001, b
=1, and �=0.5. As one can see from the results presented in
Table II, the direct estimation can be quite far off, in particu-

TABLE I. Estimated parameters of the ETAS model obtained
by the stochastic declustering method �SDM� of Zhuang et al.
�22,24,41� described in Sec. II A applied to real earthquake data
from New Zealand �NZ�, Central and Western Japan �CJ and WJ�,
and Northern China �NC�. The quoted values for the fertility ex-
ponent  differ from those reported by Zhuang et al. by the con-
version factor ln 10 accounting for our use of base-ten logarithm
and exponential compared with the natural logarithm and expo-
nential used by Zhuang et al.

Region c �  K n

NZ 0.017 0.164 0.389 0.335 0.548

CJ, WJ 0.040 0.250 0.495 0.204 0.404

NC 0.003 0.030 0.499 0.546 1.090

TABLE II. Direct estimation of the parameters �s with the
modified SDM compared with the true parameters �d of the
ETAS model used to generate the synthetic catalogs by the event-
by-event algorithm.

No. b  c � n

1 �s 1.00 0.20 0.001 00 0.50 0.20

�d 3.80 0.27 0.001 03 0.54 0.07

2 �s 1.00 0.50 0.001 00 0.50 0.50

�d 0.44 0.30 0.000 50 0.21 0.78

3 �s 1.00 0.80 0.001 00 0.50 0.80

�d 1.00 0.96 0.001 60 0.64 0.96

4 �s 1.00 0.20 0.001 00 0.50 0.80

�d 0.33 0.24 0.002 40 0.84 0.92

5 �s 1.00 0.80 0.001 00 0.50 0.20

�d 1.00 0.76 0.000 70 0.41 0.10
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lar for the parameters � and n. But the errors turn out to be
smaller than with the thinning probabilities that will be pre-
sented below. One of the origins for the errors is the limited
length of the synthetic catalog, notwithstanding the use of an
intentionally large value of �=1 /2 leading to a rather short
memory �compared to that for smaller values of � used be-
low�. The SDM and mSDM need more events to reduce the
errors in the parameter estimation. Further below, we will
consider the relationship between the length of a catalog that
is needed to obtain reasonable results and the memory quan-
tified by the exponent ��.

3. Targeted parameters

As a first test, we assume known the parameters of the
ETAS process generating the synthetic catalogs. For in-
stance, we can assume that the use of the mSDM led us to
the true values of parameters �d��s. We then apply the
SDM and the MISD to determine the background and trig-
gered events. From this knowledge, we can estimate directly
the branching ratio n and the fertility exponent  and com-
pare them with the true values. We stress that we use the
exact parameters that enter in the generation of the synthetic
catalogs to find thinning probabilities �2� to perform this test.
Thus, any discrepancy between the estimation of n and 
using the thinning probabilities should be attributed only to
errors in the reconstruction of the tree of ancestry through the
thinning probabilities.

The first key parameter of interest is the branching ratio,
which can be estimated from the knowledge of the number
of exogenous events within the data set, according to

ne = 1 −
number of background events

total number of events
, �19�

where the subscript e indicates that ne is experimental or
estimated value.

Knowing the tree structure of events obtained from the
declustering method, we can estimate directly productivity
law �9�. Specifically, the tree structure allows us to calculate
straightforwardly the mean number of direct aftershocks trig-
gered by a given event, and then to test how this mean num-
ber depends on the magnitude of the mother event. Given
true law �9�, the estimated dependence of the number of
aftershocks as a function of the magnitude of the main shock
is fitted by the following expression:

Q̂�M� = K 10A�M , �20�

where �K� ,A�� are determined using standard optimization
algorithms. The estimated values can then be compared to
the true values �K ,� used to generate the synthetic catalogs.

To account for the fact that, in real time series, small
events below a magnitude detection threshold md�m0 are
not detected, we also investigate the influence of this detec-
tion threshold on the estimated parameters. Intuitively, as
demonstrated in Refs. �42,43�, missing events lead to misin-
terpret triggered events as exogenous background events
since the chain of causal triggering may be ruptured. This
may influence severely the estimation of the background rate
and therefore of the parameters controlling the fertility and
triggering efficiency of past events. A good diagnostic of the
effect of missed events is the branching ratio n �42,43�. We
thus evaluate the apparent branching ratio estimated by the
declustering method on the catalog of events with magni-
tudes larger than md according to the following formula:

nt =
number of aftershocks with M � md, whose mother also has M � md

number of all events with M � md
�21�

We also will test how the truncation affects the estimated
parameters, and does this correspond to the theoretical de-
pendence �21,36�.

4. First test on declustering Poisson sequences

We first applied the SDM and MISD to catalogs generated
by a simple Poisson process, obtained from the formulation
of Sec. IV A by imposing the value K=0 in Eq. �9�. As a
consequence, only exogenous background events without
any triggered event are generated in synthetic catalogs with
intensity imposed equal to �=1. A correct declustering algo-
rithm should find n=0 and a background rate �̂=1.

Applying the SDM on tens of catalogs each containing
between 1000 and 2000 events with magnitudes M �0, we
recovered the correct result that the branching ratio is n=0 in
every case �all probabilities � j are found exactly equal to 1�

and the background rate is estimated as �̂=1	0.05, close
and consistent with the true value.

On a technical note, the arrest criterion controlling the
convergence of the algorithm was found to play a strong
role, much more significant for time-domain-only catalogs
than when the catalogs include spatial information. We found
these good results only for an arrest criterion corresponding
to differences smaller than 0.0001 between the parameter
values of successive iterations. We kept this value for all
subsequent tests, as a compromise between accuracy of the
convergence and numerical feasibility.

On the same catalogs, the MISD method found, however,
nonzero probabilities �ij for i� j and, as a result, a nonzero
and actually quite large branching ratio n=0.23	0.03. The
estimation of the background rate was also not very good
�̂0=0.81	0.02 instead of the true value 1. This means that
the MISD method applied in the temporal domain to already
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declustered catalogs �pure Poisson� misclassifies about 23%
of the events as being triggered, while they are all exog-
enous.

5. Tests using catalogs generated by the generation-by-
generation algorithm B

Test of the SDM. We tested the SDM using data sets gen-
erated with various values of =0–0.9 of productivity law
�9�. We generated ten catalogs of length of �50 000 days for
each parameters set, with a background rate �0=1 per day.
The duration of the catalogs in terms of days is just to offer
a convenient interpretation, as the intrinsic time scale is more
generally determined by 1 /�0. Each catalog contained about
70 000–100 000 events. We removed the first 2000 events in
the first part of the catalogs, roughly corresponding to the
first 1500 days, and applied the SDM procedure 20 times to
each catalog. Table III compiles the obtained values ne, A�,
and K� defined in Eqs. �19� and �20�, reports their standard
deviations, and compares with the true values n,, , and K.

We found that the distributions of background rates for
the different values of =0–0.9 are reasonably estimated,
with an error of no more than 10%. While the estimated

branching ratio ne is also reasonably close to the true value
for  up to 0.6 and then starts to systematically deviate for
larger ’s, the estimated parameters K� and A� are found
very far from the true values. In particular, the values of the
estimated fertility exponent A� would imply that events of all
magnitudes have on average no more than one aftershock,
which is very far from being the case, especially for large
values of . One partial cause for this bad result is the Omori
law which, as shown in Fig. 1, implies very long interevent
times between direct aftershocks. Some of those intervals
can be longer than our catalog and the real productivity will
be thus underestimated. Another possible partial cause is that
the removal of an initial part of the catalogs to analyze the
more stationary regime at later times deletes by construction
many events that are mothers of the observed events. This
also leads to an underestimation of the triggering productiv-
ity. These two explanations suggest that the problem is in-
trinsic to the application of the SDM to the ETAS model and
we do not envision easy fixes.

Test of the MISD method. We applied the MISD method to
the same catalogs. Table IV shows a slight systematic over-
estimation of the branching ratio ne over the true value n.

TABLE III. Estimated parameters ne, A�, and K� with the SDM compared with the true parameters n
=0.26, , and K of the ETAS model used to generate the synthetic catalogs by the generation-by-generation
algorithm. The other parameters have been fixed to md=m0=0, b=1, c=0.002, and �=0.19.

No. n ne  A� K K�

1 0.26 0.237	0.009 0.0 0.024	0.041 0.260 0.930	0.097

2 0.26 0.239	0.010 0.1 0.015	0.060 0.234 0.939	0.118

3 0.26 0.240	0.010 0.2 −0.005	0.041 0.208 0.960	0.087

4 0.26 0.237	0.009 0.3 −0.048	0.039 0.182 1.034	0.079

5 0.26 0.240	0.012 0.4 −0.059	0.061 0.156 1.030	0.134

6 0.26 0.240	0.018 0.5 −0.092	0.053 0.130 1.065	0.115

7 0.26 0.226	0.012 0.6 −0.104	0.073 0.104 1.082	0.142

8 0.26 0.225	0.022 0.7 −0.084	0.150 0.078 1.043	0.208

9 0.26 0.207	0.029 0.8 0.004	0.453 0.052 0.989	0.370

10 0.26 0.143	0.028 0.9 −0.151	0.043 0.026 1.097	0.068

TABLE IV. Estimated parameters ne, A�, and K� with the MISD compared with the true parameters n
=0.26, , and K of the ETAS model used to generate the synthetic catalogs by the generation-by-generation
algorithm. The other parameters have been fixed to md=m0=0, b=1, c=0.002, and �=0.19.

No. n ne  A� K K�

1 0.26 0.319	0.048 0.0 0.332	0.265 0.260 0.931	0.450

2 0.26 0.299	0.035 0.1 0.465	0.535 0.234 1.077	1.106

3 0.26 0.328	0.064 0.2 0.352	0.264 0.208 0.925	0.693

4 0.26 0.343	0.061 0.3 0.488	0.373 0.182 0.847	1.047

5 0.26 0.336	0.062 0.4 0.355	0.134 0.156 0.955	0.678

6 0.26 0.332	0.069 0.5 0.579	0.265 0.130 0.373	0.372

7 0.26 0.322	0.060 0.6 1.011	0.912 0.104 0.293	0.325

8 0.26 0.320	0.113 0.7 0.815	0.488 0.078 0.295	0.312

9 0.26 0.337	0.151 0.8 0.818	0.223 0.052 0.122	0.128

10 0.26 0.320	0.174 0.9 0.900	0.449 0.026 0.126	0.143
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The estimations of  and K are also bad with large system-
atic errors. The trend of variation in K as a function of  for
the fixed true n=0.26 is qualitatively reproduced by the de-
pendence of K� as a function of .

We must also report a surprising difference between the
SDM and the MISD method. While the standard deviations
of the estimated parameters over ten different synthetic cata-
logs are sometimes significantly larger for the MISD method
compared with the SDM, the former method exhibited some-
times very accurate results for a few catalogs for some spe-
cific values of the parameters. For instance, for one of the
synthetic catalog generated with the parameters n=0.26, 
=0.9, K=0.026, and �0=1, the MISD method gave the fol-
lowing estimates: ne=0.255	0.007, A�=0.916	0.037, K�

=0.018	0.007, and background rate �̂0=0.890	0.218. The
existence of such an excellent inversion has to be tempered
by the fact that the estimates obtained with the MISD
method applied to the other nine catalogs generated with the
same parameters were bad. This suggests a very strong de-
pendence of the performance of the MISD method on the
specific stochastic realizations.

Impact of catalog incompleteness. We now report some
results on the estimation of parameters by the two decluster-
ing methods applied to incomplete catalogs, motivated by the
nature of real-life catalogs. The incompleteness is measured
by the magnitude threshold md�m0, below which events are
missing from the catalogs used for the SDM and MISD
method.

First, we focus on the results �42,43� that the branching
ratio n is renormalized into an effective value nt which is a
decreasing function of md,

nt�md� =
1

1 +
1 − n

n
�10md�b/−1

. �22�

This prediction was verified by direct simulations with the
ETAS model. Here, we test how the incompleteness of cata-
logs may interfere with the stochastic declustering methods.
We generated 50 catalogs with the following set of param-
eters: b=1, c=0.001, �=0.1, n=0.7, =0.7, and K=0.21 and
varied md from 0 to 2. Applying the SDM 20 times to each of
the 50 synthetic data sets, Fig. 2 shows that �i� the general
trend of decreasing nt�md� as a function of md is recovered,
but �ii� there is a very significant downward bias of approxi-

mately 0.2 over the whole range 0�md�2. Table V shows
unsurprisingly that the estimated parameters A� and K� are
very far from the true values  and K. Using incomplete
catalogs cannot be expected to improve the estimation of
parameters which is already bad for complete catalogs. For
smaller values of the true branching ratio n, the discrepancy
is smaller between the reconstructed nt and the theoretical
formula �22�. For instance, for n=0.4, the difference between
the estimated nt and the formula �22� decreases from 0.1 for
md=0 �no incompleteness� to almost zero for md=2 for
which nt�md=2��0.04.

Typical results for the MISD method are reported in Table
VI for the set of true parameters n=0.7, =0.7, and K
=0.21, for md varying from 0 to 2. While the estimated ne for
md=0 �no incompleteness� are as good as with the direct
SDM estimation method, the other estimated parameters are
strongly biased. For incomplete catalogs md�0, we observe
a large overestimation of nt and significant errors in the other
estimated parameters.

Another test is provided by comparing the CDFs of back-
ground events in the incomplete catalogs as a function of md
obtained by the declustering methods with the true CDFs.
We found that the larger is the true branching ratio n, the

TABLE V. Estimated parameters ne, A�, and K� with the SDM compared with the true parameters n
=0.7, =0.7, and K=0.21 of the ETAS model used to generate the synthetic catalogs by the generation-by-
generation algorithm, for various magnitude threshold md of incompleteness. The other parameters have been
fixed to b=1, c=0.001, and �=0.1. Nmd

is the number of events in the incomplete catalogs.

No. md Nmd
ne A� K�

1 0.0 2000 0.488	0.032 −0.045	0.400 1.037	0.214

2 0.5 2000 0.406	0.035 0.135	0.784 1.085	0.437

3 1.0 1000 0.319	0.034 −0.006	0.286 1.201	0.491

4 1.5 500 0.271	0.056 −0.054	0.116 1.376	0.574

5 2.0 150 0.204	0.067 −0.047	0.094 1.495	0.769

0 0.5 1 1.5 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Threshold m
d

B
ra

nc
hi

ng
ra

tio
n t

Theoretical curve
Declustering with SDM
Declustering with MISD

FIG. 2. Dependence of the effective branching ratio nt as a
function of the threshold magnitude md of catalog incompleteness.
The parameters used to generate the synthetic catalogs with the
ETAS model are b=1, c=0.001, n=0.7, =0.7, and K=0.21. The
dashed �respectively dotted� line corresponds to nt obtained by us-
ing SDM algorithm �MISD algorithm�. The continuous curve is the
validated theoretical formula �22�.
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larger is the discrepancy between the true and reconstructed
CDFs of background events, using both declustering meth-
ods for all md values. For n�0.4, the reconstructed back-
ground CDFs are in reasonable agreement with the theoreti-
cal formula �22� with typical errors of about 10% �see Tables
IX and V and Fig. 3�. For large branching ratios, the errors
are too large and the declustering methods are unreliable.

Comparing Figs. 2 and 3, one can notice that MISD be-
comes less precise for large thresholds md. That is more
likely caused by the smaller lengths of the catalogs.

6. Tests using catalogs generated by the event-by-event
algorithm IIIC

The same tests as reported in the previous subsection
were performed on catalogs generated by the event-by-event
algorithm IIIC. We recall that our motivation for using this
alternative algorithm is to test for the expected influence of
transient regimes, which are absent by construction in the
synthetic catalogs obtained with the event-by-event algo-
rithm IIIC.

Using one hundred catalogs of 2000 events �ten for each
 going from 0 to 0.9� generated with algorithm IIIC, we

applied the SDM and obtained the results summarized in
Table VII. The results are similar to those of Table III, with a
reasonable estimation of ne but estimated A� and K� are very
far from the true values  and K.

Ten catalogs of 4000 events were generated with the pa-
rameters b=1, c=0.001, �=0.1, n=0.6, =0.2, and K
=0.48. Incompleteness was introduced at magnitude thresh-
olds md varying from 0 to 2, reducing the size of catalogs to
the md-dependent number �Nmd

events. Applying the SDM
to these incomplete catalogs, we obtained the results shown
in Table VIII. As mentioned above, the estimated ne is found
in better agreement with theoretical prediction �22� for the
largest md values for which nt is the smallest.

Table IX shows that the MISD method gives results simi-
lar to those previously obtained in Table VI. The estimated
value of background rate is �̂0=1.11	0.15, which is close
to the true value 1.

V. TESTS ON THE INFLUENCE OF MEMORY
(EXPONENT �), BACKGROUND RATE

AND CATALOG LENGTHS

A. Influence of the value of the memory exponent �

We now test one possible origin for the rather bad perfor-
mance of the SDM and MISD method when using the thin-
ning probabilities, namely, the very long memory quantified
by the small value of the exponent � �as defined in expres-
sion �8�� used in the simulations.

A series of tests were made with a larger value of �=0.5,
corresponding to significantly shorter memory. We varied the
values of n and , while fixing the other parameters c
=0.001, b=1, and �=1. We generated ten catalogs of 2500
events each using the event-by-event algorithm described in
Sec. III C for each set of parameters. We implemented both
declustering algorithms 20 times to each catalog. Table X
presents the resulting estimates of the parameters. The most
striking result is that the branching ratio n estimated by the
SDM is in general very good. While the MISD method is not
reliable for estimating the branching ratio n, it is better for
the estimation of the productivity exponent , especially for
large values. The results presented in Table X, when put in
comparison with those of the previous tables obtained with
much smaller values of the memory exponent �, illustrate
clearly the impact of the long memory on the declustering
results.
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FIG. 3. Dependence of the effective branching ratio nt as a
function of the threshold magnitude md of catalog incompleteness.
The parameters used to generate the synthetic catalogs with the
ETAS model are b=1, c=0.001, �=0.1, n=0.4, =0.2, K
=0.32. The dashed �dotted� line corresponds to nt obtained by using
the SDM algorithm �MISD algorithm�. The continuous curve is the
validated theoretical formula �22�.

TABLE VI. Estimated parameters ne, A�, and K� with the MISD method compared with the true param-
eters n=0.7, =0.7, and K=0.21 of the ETAS model used to generate the synthetic catalogs by the
generation-by-generation algorithm, for various magnitude threshold md of incompleteness. The other param-
eters have been fixed to b=1, c=0.001, and �=0.1. Nmd

is the number of events in the incomplete catalogs.

No. md Nmd
ne A� K�

1 0.0 4000 0.486	0.074 0.930	0.448 0.167	0.166

2 0.5 1300 0.420	0.069 0.873	0.878 0.089	0.188

3 1.0 400 0.345	0.060 −0.357	2.804 0.239	0.497

4 1.5 130 0.327	0.089 0.249	1.521 0.168	0.686

5 2.0 40 0.296	0.097 −0.771	3.214 0.002	0.874

LIMITS OF DECLUSTERING METHODS FOR… PHYSICAL REVIEW E 79, 061110 �2009�

061110-11



B. Case of a single large main shock triggering aftershocks

In another series of tests, we check if the SDM or MISD
are able to determine a pure tree branching process emanat-
ing from a single source. In this goal, we removed all spon-
taneous events except one, the first “main shock.” This cor-
responds to imposing �=0. In order to have sufficiently
many events in the catalogs, we take the magnitude of the
single main shock large �M1=7� and also impose large val-
ues for the parameters n and  to produce long sequences of
events. The parameter � was taken equal to 0.1 �long
memory�. We found that the SDM recognized the existence
of the only background event in two tests out of three �for
=0.8�. In contrast, the MISD lacks efficiency in such con-
ditions and proposes significantly nonzero values for the
background rate �. The estimation of n with formula �19�
cannot provide good results because it should give ne→1
�only one background event� for large catalogs. Other meth-
ods of estimating the branching ratio described in �12� gave
even worse results, with ne�1.

C. Influence of catalog lengths

As mentioned above, two effects combine to limit the
efficiency of the SDM and MISD methods: the smallness of
the exponent � leading to very long memory and the limited
length of the catalogs. We investigated how these two effects

are inter-related in practice. Using algorithm IIIB, we gener-
ated 100 catalogs with variable numbers of events �from
3000 to 12 000� and for various values of � �from 0.05 up to
0.5�. The other parameters were fixed at b=1, =0.7, c
=0.001, and n=0.7. We then applied the mSDM to each
catalog. Figure 4 shows the estimation error of the branching
ratio n. One can observe very large variations from realiza-
tion to realization and a weak tendency for estimation errors
to decrease with the length of the catalogs.

To be more quantitative, let us introduce the cumulative
error ratio defined as the sum of squares of relative errors
over all parameters,

� = �
i=1

5 	1 −
�i

d

�i
s
2

, ��1–5 = b,,c,�,n� . �23�

The dependence of the error in the determination of the ex-
ponent � as a function of catalog lengths is shown in Fig. 5
for a number of realizations for two classes of catalogs sorted
according to their overall estimation error measured by � as
defined by Eq. �23�. Again, one can observe an overall de-
crease in the estimation error with the length of the catalogs,
decorated by a very large variability from catalog to catalog.

As an illustration of the quality of the reconstruction of
the tree structure of ancestry in different catalogs, we took
seven catalogs with ��0.1 �best results� and several catalogs
with ��1 �bad results� and determined the percentage of

TABLE VII. Estimated parameters ne, A�, and K� with the SDM compared with the true parameters n
=0.26, , and K of the ETAS model used to generate the synthetic catalogs using the event-by-event
algorithm. The other parameters are fixed to md=0, b=1, c=0.002, and �=0.19.

No. n ne  A� K K�

1 0.26 0.244	0.024 0.0 0.042	0.092 0.260 0.845	0.211

2 0.26 0.238	0.027 0.1 0.033	0.082 0.234 0.856	0.203

3 0.26 0.248	0.022 0.2 0.016	0.077 0.208 0.895	0.176

4 0.26 0.246	0.036 0.3 −0.014	0.075 0.182 0.940	0.173

5 0.26 0.233	0.011 0.4 −0.032	0.070 0.156 0.967	0.137

6 0.26 0.234	0.024 0.5 −0.025	0.072 0.130 0.960	0.152

7 0.26 0.233	0.017 0.6 −0.101	0.065 0.052 1.069	0.107

8 0.26 0.216	0.024 0.7 −0.074	0.060 0.104 1.011	0.116

9 0.26 0.206	0.021 0.8 0.179	0.952 0.078 1.005	0.314

10 0.26 0.216	0.210 0.9 −0.121	0.055 0.026 1.151	0.205

TABLE VIII. Estimated parameters ne, A�, and K� with the SDM compared with the true parameters n
=0.6, =0.2 and K=0.48 of the ETAS model used to generate the synthetic catalogs by the event-by-event
algorithm, for various magnitude threshold md of incompleteness. The other parameters have been fixed to
b=1, c=0.001, and �=0.1.

No. md Nmd
ne A� K�

1 0.0 4000 0.445	0.012 −0.004	0.048 0.960	0.115

2 0.5 1300 0.208	0.012 0.000	0.0345 0.968	0.098

3 1.0 400 0.080	0.014 −0.004	0.022 1.013	0.085

4 1.5 130 0.024	0.012 0.003	0.017 0.977	0.073

5 2.0 40 0.003	0.009 0.009	0.018 0.932	0.077
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background events recognized as background and of after-
shocks recognized as aftershocks. For catalogs with the best
directly estimated parameters, the percentage were 66% and
72%, respectively, while for the “bad” catalogs the results
were 9% and 93% �i.e., almost all events were incorrectly
recognized as aftershocks�.

VI. CONCLUSIONS

Many time series in natural and social sciences can be
seen as embodying an interplay between exogenous influ-
ences and an endogenous organization. We have used a
simple model of events occurring sequentially, in which fu-
ture events are influenced �partially triggered� by past events
to ask the question of how well can one disentangle the ex-
ogenous events from the endogenous ones.

The exogenous events are modeled here by a Poisson flow
of so-called background events with constant intensity �0.
The ETAS specification of the conditional self-excited
Hawkes Poisson model has been used. It contains three prin-
cipal ingredients: �i� a long Omori-like power-law memory
of the influence of past events on future events, �ii� a
Gutenberg-Richter-like distribution of event magnitudes, and
�iii� a fertility law expressing how many events are triggered
by a given event as a function of its magnitude.

In order to separate background events from triggered
events, we have implemented and compared two so-called

“declustering” algorithms, the SDM introduced by Zhuang et
al. �22,23�, and the MISD method proposed by Marsan and
Lengliné �25�. We have applied these two methods to syn-
thetic catalogs generated by two algorithms using the ETAS
model, the generation-by-generation algorithm IIIB, and the
event-by-event algorithm IIIC.

We specifically address the problem of reconstructing the
tree of ancestry of the sequence of events in recorded cata-
logs. In particular, one main goal is to distinguish the exog-
enous shocks �background events� from the endogenous
�triggered events�. For these problems, we find that declus-
tered catalogs obtained from synthetic catalogs generated
with the ETAS model are rather unreliable, when using cata-
logs with of the order of thousands of events, typical of
realistic applications. The estimated rates of exogenous
events suffer from large errors. The key branching ratio n,
quantifying the fraction of events that have been triggered by
previous events, is also badly estimated in general with these
approaches. We find however that the errors tend to be
smaller and perhaps acceptable in some cases for the smaller
fertility exponent �0.6 and for the smaller branching ratio
n�0.4 typically. Results become better when the memory
exponent � is increased, i.e., when the memory is shortened.
We do not find significantly better performance of the SDM
versus the MISD method or vice versa, with the curious ob-
servation that the MISD method is sometimes very precise
for some catalog realizations, but this property is not robust

TABLE IX. Estimated parameters ne, A�, and K� with the MISD method compared with the true param-
eters n=0.4, =0.2, and K=0.32 of the ETAS model used to generate the synthetic catalogs by the
generation-by-generation algorithm, for various magnitude threshold md of incompleteness. The other param-
eters have been fixed to b=1, c=0.001, and �=0.1.

No. md Nmd
ne A� K�

1 0.0 2000 0.365	0.082 0.380	0.198 0.618	0.393

2 0.5 2000 0.235	0.079 0.275	1.462 0.324	0.450

3 1.0 1000 0.170	0.077 0.041	2.094 0.348	0.597

4 1.5 500 0.176	0.074 0.065	1.501 0.364	0.651

5 2.0 150 0.193	0.126 0.114	0.991 0.411	0.621

TABLE X. Estimated parameters ne, A�, and K� with the SDM and MISD compared with the true
parameters n, , and K of the ETAS model used to generate the synthetic catalogs by the event-by-event
algorithm. The other parameters have been fixed to md=m0=0, b=1, c=0.001, and �=0.5.

No. Method n  K ne A� K�

1 SDM 0.2 0.2 0.16 0.199	0.009 −0.020	0.042 0.999	0.087

2 MISD 0.2 0.2 0.16 0.313	0.019 1.116	1.203 0.367	0.285

3 SDM 0.5 0.5 0.25 0.502	0.020 −0.061	0.076 1.004	0.156

4 MISD 0.5 0.5 0.25 0.546	0.018 0.970	0.828 0.501	0.363

5 SDM 0.8 0.8 0.16 0.698	0.072 0.024	0.481 0.941	0.250

6 MISD 0.8 0.8 0.16 0.755	0.045 0.700	0.108 0.347	0.209

7 SDM 0.8 0.2 0.64 0.793	0.014 0.009	0.068 0.942	0.141

8 MISD 0.8 0.2 0.64 0.804	0.016 0.352	0.337 0.626	0.272

9 SDM 0.2 0.8 0.04 0.168	0.021 −0.160	0.081 1.187	0.159

10 MISD 0.2 0.8 0.04 0.259	0.037 0.694	0.128 0.175	0.132
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with respect to other stochastic realizations. We have also
investigated the role of incompleteness on declustering, and
found that this is not the essential limiting problem.

We should however make clear that these rather negative
results are not necessarily opposed to the more positive re-
sults reported by Zhuang et al. and Marsan and Lengliné,
which refer to a different problem, that of the direct estima-
tion of the model parameters �and not of the tree of ancestry
and of the distinction between exogenous and endogenous
events�. Our larger ambition to reconstruct the tree of ances-
try has identified clearly intrinsic limits of the inversion pro-
cess.

It appears that the high level of randomness together with
the very long memory makes the stochastic reconstruction of
trees of ancestry and the estimation of the key parameters
quite unreliable. Technically, we find the coexistence of
many coexisting stochastic reconstructions with different pa-
rameter estimates, and it is not obvious how to select what

should be the right one. This question is reminiscent of com-
plex optimization problem in the presence of a very large
number of almost equivalent solutions, as occurs in so-called
NP-complete problems �45�. There thus appears to be funda-
mental limitations intrinsic to this class of models.
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